Human Fibroblast Reprogramming to Pluripotent Stem Cells Regulated by the miR19a/b-PTEN Axis
نویسندگان
چکیده
Induction of pluripotent stem cells (iPSC) by defined transcription factors is the recognized canonical means for somatic reprogramming, however, it remains incompletely understood how individual transcription factors affect cell fate decisions during the reprogramming process. Here, we report induction of fibroblast reprogramming by various transcriptional factors is mediated by a miR19a/b-PTEN axis. cMyc, one of the four Yamanaka factors known to stimulate both somatic cell reprogramming and tumorigenesis, induced the expression of multiple mircoRNAs, miR-17 ∼ 92 cluster in particular, in the early stage of reprogramming of human fibroblasts. Importantly, miR-17 ∼ 92 cluster could greatly enhance human fibroblast reprogramming induced by either the four Yamanaka factors (Oct4, Sox2, Klf4, and cMyc, or 4F) or the first three transcriptional factors (Oct4, Sox2, and Klf4, or 3F). Among members of this microRNA cluster, miR-19a/b exhibited the most potent effect on stimulating fibroblst reprogramming to iPSCs. Additional studies revealed that miR-19a/b enhanced iPSC induction efficiency by targeted inhibition of phosphatase and tensin homolog (PTEN), a renowned tumor suppressor whose loss-of-function mutations were found in multiple human malignancies. Our results thus demonstrate an important role of miR-19a/b-PTEN axis in the reprogramming of human fibroblasts, illustrating that the somatic reprogramming process and its underlying regulation pathways are intertwined with oncogenic signaling in human malignancies.
منابع مشابه
I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملEstablishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article
Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کامل